Probe: Choosing Expressions to Represent Situations

Directions: Without doing the calculations, determine which numeric expression can be used to represent and solve the problem.

1) A pitcher had \(\frac{3}{2} \) cups of orange juice. Sue drank \(\frac{1}{4} \) of the juice in the pitcher. How much juice did she drink?

Circle the expression.

a) \(\frac{1}{4} + \frac{3}{2} \)
b) \(\frac{3}{2} - \frac{1}{4} \)
c) \(\frac{1}{4} \times \frac{3}{2} \)
d) \(\frac{3}{2} + \frac{1}{4} \)

Explain your thinking.

2) Jack has a wooden board that is \(3\frac{1}{2} \) feet long. How many \(\frac{1}{4} \)-foot long pieces can he cut from his board?

Circle the expression.

a) \(3\frac{1}{2} + \frac{1}{4} \)
b) \(3\frac{1}{2} - \frac{1}{4} \)
c) \(3\frac{1}{2} \times \frac{1}{4} \)
d) \(3\frac{1}{2} \div \frac{1}{4} \)

Explain your thinking.
Choosing Expressions to Represent Situations

Directions: Without doing the calculations, determine which numeric expression can be used to represent and solve the problem.

3) Pete is running in a $3\frac{1}{2}$ mile race. If he has run $\frac{1}{4}$ of a mile so far, how many more miles does he need to run in order to finish the race?

Circle the expression.

a) $\frac{3}{2} + \frac{1}{4}$
b) $\frac{3}{2} - \frac{1}{4}$
c) $\frac{3}{2} \times \frac{1}{4}$
d) $\frac{3}{2} + \frac{1}{4}$

Explain your thinking.

4) How many $\frac{1}{4}$-pound bags can be made from a $3\frac{1}{2}$ pound bag of peanuts?

Circle the expression.

a) $\frac{3}{2} + \frac{1}{4}$
b) $\frac{3}{2} - \frac{1}{4}$
c) $\frac{3}{2} \times \frac{1}{4}$
d) $\frac{3}{2} + \frac{1}{4}$

Explain your thinking.