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Experiment a  bit, think a  bit
    Let's begin with the wire
hoop shown in figure 1. If you
play around a bit with a piece
of wire (or thread), you'll see
that this hoop can be
disentangled (see figure 4).

Figure 4

Now I invite the reader to
disentangle hoops a-f in
figure 5.

I hope you succeeded with
hoops b, e, and f. But your
inability to disentangle hoops
a, c, and d should convince
you that hoops exist that
cannot be disentangled. How
can we prove that a
particular hoop cannot be
disentangled?
To prove that a certain
construction or process is
impossible, mathematicians
often use the following
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remarkable method. Every
state of the object under
consideration is assigned a
number that remains the
same throughout the process
(such a number is called an
invariant).  Then the invariant
is determined for the initial
and the desired states of the
object.  If different values are
obtained, it means that it is
not possible to pass from the
initial state to the desired
state-after all, that's why it's
called an invariant: it cannot
change during the process!
   So let's try to assign a
number to every hoop on the
plane. The first idea that
comes to mind is to count the
double points in the hoop.
Alas! this is not an invariant,
as you can see from figure 4.
However, examining this
figure, we notice that double
points appear and disappear
in pairs. This leads to the
idea that the parity of the
number of double points is
an invariant (in other words,
the remainder upon division
of the number of double
points by two is an invariant).

This is indeed the case, as
we will see later. This fact
implies, for example, that the
hoop in figure 5a cannot be
disentangled (it has seven
double points, while the
circle has no double
points-this prevents us from
transforming the hoop into
the circle). The hoop in figure

5d has four double points;
thus its invariant is zero, the
same as for the circle. Does
this mean that it can be
disentangled? No, it does
not, because we don't know
whether the condition of zero
invariants is sufficient. Thus
the question of whether the
hoop in figure 5d can be
disentangled remains open.

The reasoning above must
convince you that it makes
sense to search for invariants
in this case. Let's do just that.

The invariant V
Let a tangled hoop be

given in the plane. Take an

arbitrary point A on this hoop
and choose one of two
possible directions of going
around the hoop. We'll move
a point along the hoop,
starting at point A, with unit
speed in this direction. The
velocity vector will turn about
A' and its endpoint will move
along a circle centered at A'.
When we complete the tour
around the hoop and return
to point A, the velocity vector
returns to its initial state;
therefore, the total number of



revolutions of this vector
about A' is an integer. We
assign revolutions made in
the positive direction
(counterclockwise) a plus
sign and revolutions made in
the negative direction
(clockwise) a minus sign.

Look at figure 6. In this
figure, the endpoint of the
velocity vector is shown as a
dashed  curve and is shifted
from the circle to make it
easier to see what's going
on.  In reality, the red curve
is tightly wound on the circle,
and points 1' – 6' coincide.
All in all, the velocity vector
performs -1 revolution: from
point 1' to point 2', one
revolution; from point 2' to
point 3' and from 5' to 6', no
revolutions; from point 3' to
point 4', one revolution in the
negative direction; and from
4' to 5', one revolution in the
negative direction as well.

The invariant we promised
(we'll denote it by V) equals
the absolute value of the
total number of revolutions of
the velocity vector. It's clearly
independent of the choice of
the starting point A, nor does
it depend on the initial
direction taken; indeed,
changing the direction
merely changes the sign of
the total number of
revolutions. For example, for
the hoop in figure 6, the
invariant is 1.

We'll show (without giving
a rigorous proof) that V is
actually an invariant. When
the hoop is disentangled, the
position of the velocity vector
changes smoothly, without
making any jumps.
Therefore, the number V
must also change smoothly.
However, V is an integer and
it can turn into another
integer only by making a

jump, which contradicts the
criterion of continuity.
Therefore, V remains
unchanged and is indeed an
invariant of the disentangling
operation.

Now we can tackle the
hoop in figure 5d. For this
hoop, V = 3 (check this on
your own!); therefore, it
cannot be disentangled into
a circle, for which V = 1.

If you actually verified that
V = 3 for the hoop in figure
5d, you must have noticed
that, in practice, it's not so
easy to calculate the number
of revolutions of the velocity
vector. In fact, it's easy to
miscalculate. However,
there's an easier way to
calculate V.

For this purpose we
choose a direction in the
plane-for example, the
direction of the axis Oy (see
figure 6) - and mark the
points of the hoop where the
velocity is parallel to Oy and
in the same direction. We
write the number +1 near a
marked point if the small
section of the hoop
containing this point lies to
the left of it; we write the
number -1 near a marked
point if the section of the
hoop containing this point
lies to the right of it. (If the
section containing the
marked point lies on both
sides of it, we don't write any
number. This happens when
the vector is traveling along
a loop and suddenly starts
looping in the other direction
at the marked point - it traces
a sort of flattened "S." and
never completes the first
loop.) Now we can say the
invariant V equals the
absolute value of the sum of
all the numbers written.

For example, in figure 6,
we write + 1 at points 1 and
2 and -1 at points 3, 4, and
5. Thus V = 1 for this hoop.

Figure 7

We invite the reader to prove
that this method actually
gives the value of V for any
hoop.

In figure 7, for any
nonnegative integer n, a
hoop whose invariant V
equals n is shown. We recall
that if a hoop can be
disentangled into a circle, its
invariant V must be equal to
the invariant of the circle —
that is, to 1.

The invariant R
The equality V = 1 is a
necessary condition for a
hoop to be disentangled into
a circle. But is this condition
also sufficient? At first I
thought it was, but
unsuccessful attempts to
disentangle my belt,
arranged as shown in figure
8b, convinced me that it
wasn't and simultaneously
elicited an important
observation: when I picked
the belt up off the floor (figure
8a), it was twisted completely
around twice!
   Let's replace the hoop with
a band that lies on the plane
such that its middle line
coincides with the hoop



(figure 9a). Disentangling the
hoop in space (for example,
returning it to the initial state
in which it was before
placing it on the plane), we
obtain a twisted band. We
denote the number of
complete twists (where the
"front" is twisted around and
faces the front again) by R.
This number is our second

invariant, and if the hoop is
to be disentangled into a
circle, this invariant must be
zero.

   To be more specific, the
number of complete twists is
given a plus sign if the band
is twisted as in figure 8a, and
a minus sign if it's twisted as
in figure 8c (recall the
difference between a left-
and right-threaded screw).
   We'll prove that the number
R is indeed an invariant –
that is, it doesn't change
when the hoop is
disentangled in the plane.
It's sufficient to notice that
disentangling the hoop
determines a method for
disentangling the
corresponding band.  But the
number of twists of the band
remains unchanged not only
when the band is
disentangled in the plane, but
for any three-dimensional
motion.
   It can be proved (we won't
do it here) that the invariant
R can be calculated as
follows.  Choose a direction
for going around the hoop.
Then mark every double
point with the number +1 if
the lower velocity vector is
directed to the left of the
upper velocity vector;
otherwise, mark this double
point with -1. It's easy to see
that these numbers are
independent of the direction
chosen. The invariant R
equals the sum of these
numbers. For example, the
hoop in figure 9b has three
positive and four negative
double points; thus, its
invariant R is -1. Therefore,
this hoop cannot be
disentangled in the plane.

Necessary and sufficient
conditions
   We've already seen that
the conditions V = 1 and
R = 0 are necessary for the

hoop to be disentangled into
a circle. But are these
conditions sufficient?  In
other words, is it sufficient to
check that V = 1 and R = 0
to be sure that the hoop can
be disentangled into a circle?
The answer is yes.

Fundamental theorem. In
order for a hoop to be
disentangled into a circle
in the plane, it is
necessary and sufficient
that its invariant V be
equal to 1 and its invariant
R be zero.

This theorem gives the
complete answer to the
question formulated at the
beginning of this article. The
simple methods described
above for evaluating V and R
allow us to quickly check the
necessary and sufficient
conditions in the theorem.
We invite the reader to apply
this theorem to the hoops
depicted in figure 10.

Proof of the fundamental
theorem

We've already proved that
V and R are invariants; thus
the necessity of the



conditions V = 1 and R = 0 is
already proved. To prove
sufficiency, we must
showthat every hoop for
which     V = 1 and R = 0 can
be disentangled into a circle
in the plane.
   Consider a hoop of this
type. We know that it can be
disentangled in three-
dimensional space. We

denote by K̃
t
 the position of

the hoop at the time t in the
process of disentangling it.
The moment t will be called

singular if the hoop K̃
t
 has a

vertical tangent at one or
more of its points.  Assume
that there are no singular
moments.  Then the hoop
can be disentangled in the
plane.  Indeed, assume the
ceiling of the room where we
work with the hoop is parallel
to the plane to which the
hoop belongs.  Imagine that
the ceiling starts dropping
until it reaches the plane with
the hoop.  In the process,

every hoop K̃
t
goes to a

certain plane hoop Kt .  The
absence of vertical tangents
guarantees that no folds
(points with zero curvature)
occur in the hoops Kt .  The

family of hoops Kt
determines the desired
method for disentangling the
given hoop into a circle in the
plane.

Now consider how the
hoop K

t
behaves when the

moment t = t
0
 is singular 

that is, the hoop passes the
state K

t0
 with a vertical

tangent. A typical picture of
this passage through the
vertical state is shown in
figure 11. We see that when
the hoop undergoes the

transformation
˜ ˜ ˜K K K
t t t1 0 2

→ →  in space,

the corresponding plane
hoop undergoes the
forbidden transformation
˜ ˜ ˜K K K
t t t1 0 2

→ →  during

which the break K
t0

 occurs

and a loop appears on the
hoop K

t2
.

It can be proved (but not
here) that the process of
disentangling any hoop in
space can be performed in
such a way that only a finite
number of singular moments
occurs and all of them are
typical — that is, a single
loop appears or disappears
at each of these moments.
   Now assume that a loop
has appeared at a singular
moment.  We cannot create
a loop by transforming the
hoop in the plane, but we
can create two (mutually
annihilating) loops, as shown
in figure 12.  Thus, we create
two loops, contract the extra
one into a very small loop,
and "freeze" it.

Continuing the process of
disentangling simultaneously in

three-dimensional space and in
the projection onto the plane,
we transform the plane hoop

into a circle with a finite
number of small ("frozen")
loops. These loops can be
classified into four types
depending on where the loop is
situated (inside the circle or
outside of it) and in what order
its double point passes (first the
upper and then the lower thread,
or vice versa). Then we can
change the order of the loops by
pulling one through the other, as
shown in figure 13.

If k
i
 denotes the number

of loops of type i , then
V k k k k= + + − −1 1 2 3 4  and
R k k k k= − + −1 2 3 4 .

Recalling that V = 1 and
R = 0, we obtain the system
of equations

{ k k k k

k k k k
1 2 3 4

1 2 3 4

0

0

+ − − =

− + − =



from which it follows that
k k1 4=   k = kand 2 3.   A pair

of loops of types 1 and 4 can
easily be destroyed, as
shown in figure 12; the same
is true for pairs of loops of
types 2 and 3 (figure 4). It
remains to transform our
circle with loops into a real
circle.  The theorem is thus
proved.

Disentangling hoops with self-
intersections
   Now let's change the
statement of the problem by
saying we're allowed to
create self –intersections
while we're disentangling the
hoop.  More precisely, we're
allowed to pull the lower part
of the loop through the upper
part near double points, as
shown in figure 14. This
problem statement doesn't
seem quite natural (indeed,
to perform such a
transformation, we must cut
the hoop and glue it back
together, which can wear
down even the most patient
experimenter). And yet a
formal mathematical problem
investigated by the American
mathematician H. Whitney in
the 1930s can be reduced to
this very statement. In fact,
Whitney's problem served as
the starting point for this
article.
   Since we are now
interested in disentangling
hoops in the plane with
self-intersections allowed,
the reader is invited to prove
the following statements.
   1. The number ki  is an

invariant of the operation of
disentangling with self
-intersections. (Hint: recall

the method for evaluating V
described above.)

   2. The number R is not
an invariant of the operation
of disentangling with self
-intersections. (Hint:
experiment with a belt,
exchanging the upper and
lower parts near one of the
double points.)
   3. The remainder R’ upon
division of R by 2 is an
invariant of the operation of
disentangling with self
-intersections. (Hint: every
operation of self -intersection
replaces the number ±1
marking the double point
with m 1.)

   4. The number R’ is an
invariant of the operation of
disentangling (without self
-intersections!) the hoop in
the plane.
   To make further progress,
we'll need the notion of a
simple loop: this is a portion
of the hoop that begins at a
double point, ends at the
same double point, and has
no self-intersections (though
it may intersect other
portions of the hoop, as
shown in figure 15). Now try
to prove the following series
of propositions.

   5. Every plane hoop has a
simple loop.
   6. Every simple loop can
be contracted (with self

-intersections!) into a small
loop without affecting other
parts of the hoop.
   7. Any hoop can be
transformed (with self
-intersections) into a figure
eight, a circle, or a circle with
a finite number of small loops
inside it.
   8. Any hoop can be
transformed (with self
-intersections) into any other
hoop if we first add to one of
these hoops several (how
many?) loops.
   9. (Whitney's theorem) A
hoop with invariant V1 can be
transformed into another
hoop with invariant V2  if and
only if V V1 2= .
   In conclusion, we present
three more problems related
to the initial problem
statement (concerning the
process of disentangling
without self -intersections).
   10. For any pair of integers
m and n with an odd sum
(m ≥ 0 ), construct a hoop
with invariants V = m and R
= n. Why don't any hoops
exist with invariants V = 1
and      R = 1?
   11. Formulate and prove
an analogue of Whitney's
theorem for disentangling
hoops without self
-intersections.
12. Prove that any hoop on
the sphere can be
transformed (without
self-intersections) into either
a circle or a figure eight.




