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1 Features of Axiomatic Systems

One motivation for developing axiomatic systems is to determine precisely which properties
of certain objects can be deduced from which other properties. The goal is to choose a
certain fundamental set of properties (the axioms) from which the other properties of the
objects can be deduced (e.g., as theorems). Apart from the properties given in the axioms,
the objects are regarded as unde�ned.

As a powerful consequence, once you have shown that any particular collection of objects
satis�es the axioms however unintuitive or at variance with your preconceived notions these
objects may be, without any additional e�ort you may immediately conclude that all the
theorems must also be true for these objects.

We want to choose our axioms wisely. We do not want them to lead to contradictions;
i.e., we want the axioms to be consistent. We also strive for economy and want to avoid
redundancy|not assuming any axiom that can be proved from the others; i.e., we want the
axiomatic system to be independent. Finally, we may wish to insist that we be able to prove
or disprove any statement about our objects from the axioms alone. If this is the case, we
say that the axiomatic system is complete.

We can verify that an axiomatic system is consistent by �nding a model for the axioms|a
choice of objects that satisfy the axioms.

We can verify that a speci�ed axiom is independent of the others by �nding two models|one
for which all of the axioms hold, and another for which the speci�ed axiom is false but the
other axioms are true.

We can verify that an axiomatic system is complete by showing that there is essentially only
one model for it (all models are isomorphic); i.e., that the system is categorical.

For more details and examples, see Kay, College Geometry: A Discovery Approach, Addison
Wesley, 2001, Section 2.2.

2



2 Examples

Let's look at three examples of axiomatic systems for a collection of committees selected
from a set of people. In each case, determine whether the axiomatic system is consistent or
inconsistent. If it is consistent, determine whether the system is independent or redundant,
complete or incomplete.

1. (a) There is a �nite number of people.

(b) Each committee consists of exactly two people.

(c) Exactly one person is on an odd number of committees.

Answer: This axiomatic system is inconsistent. In fact, we can prove that the �rst
two axioms imply that the number of people on an odd number of committees must
be even. This is sometimes called the Handshaking Theorem because it is often stated
in the form of pairs of people shaking hands (rather than serving on committees).

Handshaking Theorem: If various pairs of people among a �nite number
of people shake hands, the number of people who shake hands an odd number
of times is even.

Proof: Assume that there are n people. Let ai denote the number of times individual
i shakes hands, i = 1; : : : ; n. Let K denote the total number of handshakes that take
place. Then a1 + a2 + � � � + an = 2K because every handshake is counted twice when
we add up the number of handshakes for each individual. Now 2K is an even number,
so the sum a1 + a2 + � � � + an must be even. Therefore, the number of odd terms in
this sum must be even.
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2. (a) There is a �nite number of people.

(b) Each committee consists of exactly two people.

(c) No person serves on more than two committees.

(d) The number of people who serve on exactly one committee is even.

Answer: We can think of a model satisfying the four axioms; e.g., a set of two people
and just one committee consisting of these two people:

Each dot represents a person and the line segment connecting the two dots indicates
the committee. Therefore this axiomatic system is consistent.

We can show that Axiom (2d) is a consequence of Axioms (2a), (2b) and (2c): Assume
that Axioms (2a) and (2b) hold. Then by the Handshaking Theorem, the number
of people serving on an odd number of committees is even. By Axiom (2c), if an
individual serves on an odd number of committees, he/she must serve on exactly one
committee. Therefore the number of people serving on exactly one committee is even.

From this argument we can conclude that this axiomatic system is not independent.

Finally there are many distinctly di�erent models for this axiomatic system; e.g., one
consisting of two people and one committee, and one consisting of three people and
three committees:

Therefore this axiomatic system is not complete, since it does not determine essentially
one model.
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3. (a) Each committee consists of exactly two people.

(b) There are exactly six committees.

(c) Each person serves on exactly three committees.

Answer: We can �nd a model for this axiomatic system:

Therefore, this axiomatic system is consistent.

We can show that Axiom (3c) is independent of the other two axioms by looking at the
following di�erent model, in which Axioms (3a) and (3b) hold, but Axiom (3c) does not:

So we have one model in which all three axioms hold, and another in which the �rst two
axioms hold but the third does not. This proves that the third axiom is independent of the
other two.

We can show that Axiom (3b) is independent of the other two axioms by looking at the
following model, in which Axioms (3a) and (3c) hold, but Axiom (3b) does not. Again, we
are representing individuals by dots and committees by line segments.
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We can show that Axiom (3a) is independent of the other two axioms by looking at the above
�gure in a di�erent way, thinking of it as a drawing of a cube. If we use the six squares of
the cube to represent six committees of four people each, then we have a model in which
Axioms (3b) and (3c) hold, but Axiom (3a) does not.

To summarize, in each case we have proved that one of the axioms is independent of the
other two by providing two models: one in which all three axioms hold, and another in which
the particular axiom does not hold but the other two do.

Is our axiomatic system complete? Is there essentially only one model? We start by proving
that there can only be four people: If we multiply the number of committees (6) by the
number of people in each committee (2) we get the number 12. But since each person serves
on exactly three committees, this counts each person three times. So the total number of
people must be 12=3 = 4.

However, even with this limitation, there are still essentially di�erent models for this ax-
iomatic system:
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We can eliminate all but the �rst model above, and thereby make our axiomatic system
complete, by adding one more axiom that is independent of the other three. For example,
we could include as a fourth axiom that there do not exist two committees with exactly the
same set of members.
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3 Finite Projective Planes

Consider the following axiomatic system for points and lines, where lines are certain subsets
of points, but otherwise points and lines are unde�ned.

1. Given any two distinct points, there is exactly one line containing both of them.

2. Given any two distinct lines, they intersect in a single point.

3. There exist four points, no three of which are contained in a common line.

4. The total number of points is �nite.

Exercise 1: Try to come up with some models for this axiomatic system. Which model
could you �nd with the smallest number of points?

Answer: The Fano plane below is a model with 7 points and 7 lines.

Exercise 2: Prove that if there exists a line with q+1 points, then every line contains q+1
points, every point is contained in q + 1 lines, there is a total of q2 + q + 1 points, and there
is a total of q2 + q + 1 lines.

Answer: Here is the solution from Ball and Coxeter, Mathematical Recreations and Essays,

University of Toronto Press, 1974, Chapter X.

Let us consider 4 points P , Q, R, S, no 3 on a line, whose existence is guaranteed
by (3). The line RS contains a �nite number of points, q + 1 say. Then any
point non-incident with RS is on at least q+1 lines by (1), and on at most q+1
lines by (2), thus on exactly q + 1 lines. In particular this holds for P and Q.
This implies that every line determined by P , Q, R, S contains q + 1 points.
Therefore, every point of the plane is on q + 1 lines, and every line of the plane
contains q + 1 points. The total number of points in the plane (the points on all
lines through any point) equals 1 + (q + 1)q = q2 + q + 1. This is also the total
number of lines in the plane.

Exercise 3: Find a model containing exactly 13 points.
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These axioms de�ne structures called �nite projective planes. I have a game called Con-

�gurations that is designed to introduce the players to the existence, construction, and
properties of �nite projective planes. When I checked in January 2002 the game was avail-
able from WFF 'N PROOF Learning Games Associates, http://www.w�-n-proof.com, 402
E. Kirkwood, Fair�eld, IA 52556, Phone (641) 472-0149, Fax (641) 472-0693, for a cost of
$25.00.

Here are examples of some problems from this game:

Exercise 4: In each box below write a number from 1 to 7, subject to the two rules: (1)
The three numbers in each column must be di�erent; (2) the same pair of numbers must not
occur in two di�erent columns.

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7
Row 1
Row 2
Row 3

Answer:

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7
Row 1 1 1 1 2 2 3 3
Row 2 2 4 6 4 5 4 5
Row 3 3 5 7 7 6 6 7

Exercise 5: Use the solution to the above problem to label the seven points of the following
diagram with the numbers 1 through 7 so that the columns of the above problem correspond
to the triples of points in the diagram below that lie on a common line or circle.
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Answer: The Fano plane:
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