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1 Introduction

Prior to taking part in this Mathematics Research Project, I have been responding
to the Problems of the Week in the Math Forum Website. I am grateful that the
Math Forum recommended me and gladly participated in this project. The course
of the project was a challenge, as if I was in the dark searching for the correct path
to take. The type of work I had to do was really somehow different from school
work. Under the guidance of my mentor, Martin Kassabov of Yale University, and
through his invaluable advice, I managed to tackle the numerous problems I came
across. Before I begin to talk about the project itself, I would like to say that I really
enjoyed working on my research. It has shed some light into the fascinating world of
Mathematical research. There is no doubt that it has taken me a step further into
the interesting World of Mathematics.

2 Mathematical Induction

Every statement must be justified by evidence. In math, this is done by proving
that the equations obtained are correct. The first ‘tool’ I learned is Mathematical
Induction. Induction is a step by step process of proving a statement; this method
of constructing a proof is best suited to sequences or functions which are defined
recursively. It is the process of generalizing from a repeated pattern from the past.
What is perhaps a bit unusual about a proof by induction is that we must know the
first result to construct the proof. Induction does not tell us how to construct a proof
but gives us a way of proving it when it is known.

Induction works on expressions involving natural numbers, e.g.

1 + 3 + 5 + ...+ (2n− 1) = n2, for any natural number n.

Let’s call this statement S(n), so

S(n) = 1 + 3 + 5 + ...+ (2n− 1) = n2, n ∈ N
It could be shown that:

S(1) = 1 = 12

S(2) = 1 + 3 = 22

S(3) = 1 + 3 + 5 = 32.
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We have now a formula which seems to work, but we must prove it.

A proof by induction really involves two steps.

1. S(1) must be shown true.

2. Assuming that S(n) is true, we need show that S(n+ 1) must be true.

Once we show S(1) holds, then we must prove that the statement S(n) holds for
any natural number n. So, if S(n) is true, we must show S(n + 1) is also true.

For instance,

if n = 1, then S(n+ 1) is true because n+ 1 = 1 + 1 = 2;
if n = 2, then S(n+ 1) is true because n+ 1 = 2 + 1 = 3;
if n = 3, then S(n+ 1) is true because n+ 1 = 3 + 1 = 4.

Following this logic, any natural number would eventually be reached.
The example above required us only to prove the first term, S(1), to be true, to

assume S(n) to be true, and to prove S(n + 1) to be true. Sometimes it is easier
to show that S(n + 1) is true if we assume both S(n − 1) and S(n). If we want to
make mathematical induction like this, we need to show that both S(1) and S(2) are
true in order to start the process. This is the case if a function is defined recursively
by 2 previous functions. The polynomial central to this project is one such example.
Let’s define these Chebyshev Polynomials and call them Tn. Tn(x) = 1 for n = 0,
Tn(x) = x for n = 1, and Tn(x) = 2x(Tn−1)(x) − Tn−2(x) for n > 1. Tn will be used
throughout the discussion that follows and refers to the Chebyshev Polynomials as
defined.

3 Some properties of the polynomials Tn

Some Tn(x)-es are listed below:

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1
T5(x) = 16x5 − 20x3 + 5x

From these formulas we can see some interesting patterns in Tn(x) and the graph
of Tn(x).

1. The exponents of x with non-zero coefficients in Tn are alternatively odd and
even and the degree of the polynomials is equal to n.

This could be shown by induction:

Step 1: The statement is clearly true for n = 0 and n = 1.
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Step 2: Let us show that it also holds for n+ 1, assuming that it is true for n
and n− 1. Let us also assume that n is even, the case when n is odd is similar.

The polynomial Tn−1(x) has all exponents of x as odd, by assumption. The
polynomial Tn(x) has all exponents of x as even, also by assumption. Then

Tn+1(x) = 2x · Tn−1(x)− Tn(x) by definition for n > 1,

Tn+1(x) = 2x(Tn)(x)− Tn−1(x) = 2x(even power)− odd power

= some odd power− odd power = odd power.

2. The graph of Tn passes through the point (1,1) for any n, i.e. Tn(1) = 1.

T0(x) = 1 by definition for n = 0
T1(x) = x by definition for n = 1
Tn(x) = 2x(Tn−1)(x)− Tn−2(x) by definition for n > 1

Step 1: T0(1) = 1 by definition
T1(1) = 1 by definition

Step 2: Tn−1(1) = 1 by assumption for n− 1
Tn(1) = 1 by assumption for n

Tn+1(1) = assuming that x = 1
= 2(1)(Tn)(1)− Tn−1(1)
= 2(1)(1)− 1 = 1

This proves that Tn(1) = 1 holds for every n, i.e, the graphs of the polynomials
Tn(x) pass though the point (1, 1).

3. Tn(x) is an even function, when n is even, also Tn(x) is an odd function, when
n is odd.

4. Notice that the exponent of the highest degree increases by 1 as n increases by
1, this means that the number of stationary points (critical points or turning
points) will increase by 1. As the graph of Tn(x) for all n are positive, and from
the fact that there are different number of turning points, the graph will tend
either to the second or third quadrant.

This also implies that Tn(−1) will have a different value for a different n. Using
Induction, it can be proved that Tn(−1) is either +1 or −1 for all n.
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5. For a graph with the polynomial of highest degree n, the maximum number of
stationary points is n− 1. Drawing the graphs of Tn(x) will reveal that all the
n − 1 turning points occur within the domain {−1 < x < 1} and have a value
of either −1 or 1. This fact reveals that the most important region of Tn(x) is
the interval [−1, 1].

6. There is also a pattern in the number of waves that go up or down. For a
polynomial of highest degree n, if n is an even number, there is one more ‘up
wave’ than ‘down wave’. If n is an odd number, there is an equal number of
them.

7. There are some graphs with common turning points. It turns out that the
turning points of Tn(x) are also some of the turning points of Tkn(x). Note: kn
means a multiple of n, e.g. the critical points of T2(x) are also in T4(x) as well
as T8(x) etc.

Graph of some Tn

T0 (red), T1 (yellow), T2(green), T3 (light blue), T4 (dark blue)
As indicated above, the graph of Tn(x) for every n passes through the point (1, 1).
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4 Turning points

Literally, it is the turning points under investigation. Figuratively, it is also the
turning point of the project.

Finding a generalization in the turning points may make it easier to determine
other points in Tn. I began studying the largest xn < 1 for which Tn(xn) = 1.

A list of n with its corresponding x is as follows:

n xn
2 -1
3 -0.5
4 0
5 0.308
6 0.500
7 0.623
8 0.707
9 0.769
10 0.808
11 0.841
12 0.866

The values were determined from the graph. Since they are defined recursively
i.e., T4(x) is defined from T3(x) and T2(x), therefore finding a relationship between x
and xn will facilitate in analyzing the polynomials. The table of values was studied
closely and the appearance of some sines and cosines of simple angles like:

sin 30◦ = 0.5, sin 45◦ = 0.707, and sin 60◦ = 0.866

gave an impetus to use trigonometric functions to describe the relation.
Using trial and error, it was found that the for each n the number xn, such that

xn is the largest less than 1 and the graph of Tn(x) passes though point (xn, 1), is
given by

xn = cos(360◦/n).

This discovery is the key to the project, since it suggested that there is a closer
relationship between polynomials Tn and trigonometric functions. At this point I had
no idea why this relation held and how I could prove it.

As Martin suggested that to convince myself that the equation is correct, I tried
to find equations for similar relationships. And I succeeded in finding similar formula
for similar sequences xn defined using the graphs of Tn(x).

1. For the largest xn such that Tn(xn) = 0, i.e., the point (x, 0) lies on the graph
of Tn. For each n we have that xn = cos(90◦/n).
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2. For the largest xn such that Tn(xn) = −1, i.e., the point (x,−1) lies on the
graph of Tn. For each n we have that xn = cos(180◦/n).

3. For the second largest xn such that Tn(xn) = 1, i.e., the point (x, 1) lies on the
graph of Tn. For each n we have that xn = cos(720◦/n).

Martin noticed the following interesting fact.

Tn( cos(0◦/n)) = 1 = cos(0◦)
Tn( cos(90◦/n)) = 0 = cos(90◦)
Tn( cos(180◦/n)) = −1 = cos(180◦)
Tn( cos(360◦/n)) = 1 = cos(360◦)
Tn( cos(720◦/n)) = 1 = cos(720◦)

Tn( cos(360K◦/n)) = 1 = cos(360K◦)

This fact suggested that there is a relationship like Tn(cos(x/n)) = cosx. The
proof for the equation Tn(cos(x/n)) = cosx is the critical part of the project.

5 Proof of the relation Tn(cos x) = cos(nx)

After guessing a nice formula for the polynomials Tn, we need to prove that it holds.
Prove: Tn(cosx) = cos(nx). (Note that this is equivalent to saying that Tn(cos(x/n)) =

cosx.)
My proof is based on the identity

cos(A+B) = 2 cosA cosB − cos(A−B).

The proof of Tn(cosx) = cos(nx) holds for every n is done by induction:

Step 1: T0(cosx) = 1 = cos(0x) by definition
T1(cosx) = x = cos(1x) by definition

Step 2: Tn−1(cosx) = cos((n− 1)x) by assumption for n− 1
Tn(cosx) = cos(nx) by assumption for n
Tn+1(cosx) = cos((n+ 1)x) equation to be proven

In order to prove the above equation we need to expand both sides and show that
they are equal to one and the same thing.

The right side is equal to:

cos((n+ 1)x) = cos(nx+ x) = distributive law
= 2 cos(nx) cosx− cos(nx− x) = using the trig identity
= 2 cos(nx) cosx− cos((n− 1)x) distributive law,
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and the left side is:

Tn+1(cosx) = substituting Tn and Tn−1

2 cosx cos(nx)− cos((n− 1)x) in the formula for Tn+1

Therefore the left and the right sides are equal, which proves that

Tn+1(cosx) = cos((n+ 1)x),

assuming that Tn−1(cosx) = cos((n− 1)x) and Tn(cosx) = cos(nx).
Thus we have shown by induction that

Tn(cosx) = cos(nx) holds for every n ∈ N.

This proof uncovered an alternative way to compute Tn(x) for x in the interval
[−1, 1].

These polynomials are known as Chebyshev Polynomials.
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