\qquad
\qquad

Probe: Choosing Expressions to Represent Situations

Directions: Without doing the calculations, determine which numeric expression can be used to represent and solve the problem.

1) A pitcher had $3 \frac{1}{2}$ cups of orange juice. Sue drank $\frac{1}{4}$ of the juice in the pitcher. How much juice did she drink?

Circle the expression.
a) $\frac{1}{4}+3 \frac{1}{2}$
b) $3 \frac{1}{2}-\frac{1}{4}$
c) $\frac{1}{4} \times 3 \frac{1}{2}$
d) $3 \frac{1}{2} \div \frac{1}{4}$

Explain your thinking.

2) Jack has a wooden board that is $3 \frac{1}{2}$ feet long. How many $\frac{1}{4}$-foot long pieces can he cut from his board?

Circle the expression.
a) $3 \frac{1}{2}+\frac{1}{4}$
b) $3 \frac{1}{2}-\frac{1}{4}$
c) $3 \frac{1}{2} \times \frac{1}{4}$
d) $3 \frac{1}{2} \div \frac{1}{4}$

Explain your thinking.
\qquad
\qquad

Choosing Expressions to Represent Situations

Directions: Without doing the calculations, determine which numeric expression can be used to represent and solve the problem.
3) Pete is running in a $3 \frac{1}{2}$ mile race. If he has run $\frac{1}{4}$ of a mile so far, how many more miles does he need to run in order to finish the race?

Circle the expression.
a) $3 \frac{1}{2}+\frac{1}{4}$
b) $3 \frac{1}{2}-\frac{1}{4}$
c) $3 \frac{1}{2} \times \frac{1}{4}$
d) $3 \frac{1}{2} \div \frac{1}{4}$

Explain your thinking.
4) How many $\frac{1}{4}$-pound bags can be made from a $3 \frac{1}{2}$ pound bag of peanuts? Circle the expression.
a) $3 \frac{1}{2}+\frac{1}{4}$
b) $3 \frac{1}{2}-\frac{1}{4}$
c) $3 \frac{1}{2} \times \frac{1}{4}$
d) $3 \frac{1}{2} \div \frac{1}{4}$

Explain your thinking.

