Michelle and Han's proof

In the dialogue that follows, Michelle and Han are discussing a combinatorial proof of the binomial theorem. Finish the discussion and proof for them. Be sure to provide a proof of the general result, not just the $n=5$ case.

Michelle: I have another proof of the binomial theorem.
Han: How's it go?
Michelle: Well, look at $(a+b)$. It's really just $(a+b)(a+b)(a+b)(a+b)(a+b)$, right?
Han: And you want to do that?
Michelle: I want to imagine doing it. If I multiplied all this out, I'd get a sum of terms, each of which is a sum of some a 's multiplied by some b 's. I get each term by taking a letter from each parentheses then multiplying them together. For example, I could take a from parentheses 1,2 , and 4 and b from parentheses 3 and 5 . That would give me an $a^{3} b^{2}$.

Han: But you could also get an $a^{3} b^{2}$ by taking a from parentheses 1,2 , and 3 and b from parentheses 4 and 5.

Michelle: Right, so the coefficient of $a^{3} b^{2}$ will be the number of ways I can pick $3 a$'s and $2 b$'s from the 5 parentheses.

Han: And that is just the number of ways you can pick three things (the a 's) from each of the five parentheses. So it's $\binom{5}{3}$.

Michelle: Or, think of it as the number of ways you can pick two things (two b 's) from the five parentheses. That's $\binom{5}{2}$, which is the same as $\binom{5}{3}$.

Han: OK, call it $\binom{5}{2}$ if you want. So, we have one part of $(a+b)^{5}$. It's $\binom{5}{2} a^{3} b^{2}$.
Michelle: And the same idea applies to other terms. You can pick no a 's and five b 's, one a and four b 's, ...

From Connecting with Mathematics (2002). Combinatorial algebra, session 4. Newton, MA: EDC.

